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FROM URYSOHN’S UNIVERSAL METRIC SPACE TO A
UNIVERSAL SPACE-TIME

A. G. Aksoy1, Z. Glassman2, O. Kosheleva3, V. Kreinovich3

A known Urysohn’s result shows that there exists a universal metric space, i.e.,
a metric space into every other (separable) metric space can be isomorphically
embedded. Moreover, this universal metric space can be selected to be ultra-
homogeneous – every isomorphism of its two finite subsets can be extended to
the isomorphism of the whole space.
Starting with Einstein’s theories of Special and General relativity, space-times
are described by a different type of structure – a set (of events) equipped with
the proper time τ(a, b) between points a and b; such spaces are known as
space-times with kinematic metric, or k-space-times. In this paper, we show
that Urysohn’s result can be extended to k-space-times – namely, that there
exists an ultra-homogeneous universal k-space-time.

1. Formulation of the Problem
Urysohn’s universal metric space. In one of his latest papers [16],

P. Urysohn showed that there exists a universal metric space U into which every
separable metric space can be isometrically embedded; see, e.g., [1, 9, 10, 14]. The
Urysohn’s space is known to be ultra-homogeneous in the sense that every isomor-
phism between its two finite subspaces can be extended to an auto-isometry, i.e., an
isometric 1-1 mapping of the space U onto itself.

Possible physical interpretation of Urysohn’s universal metric space.
From the physical viewpoint, Urysohn’s universal set can be viewed as a universal
space – a space that includes all other metric spaces as its subsets.

Need to consider space-times, not metric spaces. In Newton’s physics,
spatial distance d(a, b) was a well-defined physical notion. Relativity theory has
shown, however, that spatial distance is not absolute, it depends on the coordinate
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system; to properly describe the physical world, we thus need to consider space-times
(sets of events), not just spaces; see, e.g., [2, 5, 6].

Proper time: a natural space-time analog of a metric. In relativity
theory, the only “absolute” (invariant) analog of metric distance is the proper time
τ(a, b) between two events a and b.

In relativity theory, the observed time interval depends on the person’s motion:
in general, the faster you travel, the shorter the observed time interval, so that for
objects moving close to the speed of light, time practically stands still; this is the
main idea behind the well-known “twins paradox”. Thus, if an event a causally
precedes event b, it is always possible to get from a to b by spending as little proper
time as possible: it is sufficient to travel with a speed close to the speed of light,
and then travel back with the same speed.

The longest possible proper time is when we are immobile (or when we move with
constant direction in the same velocity); any acceleration decreases the amount of
proper time. Thus, a physically meaningful proper time τ(a, b) can be defined as
the longest possible proper time for all trajectories leading from the event a to the
event b. When a is not causally preceding b, we can set τ(a, b) = 0.

Comment. The fact that we consider the longest possible proper time make this
notion different from (kind of dual to) the usual spatial metric d(a, b) which can be
defined as the length of the shortest possible path connecting spatial points a and b.

Properties of proper time. Clearly, we can get from any event a to itself in
0 time, so τ(a, a) = 0.

If an event a casually precedes b, and b causally precedes c, then some trajectories
going from a to c pass through b but not necessarily all of them. The largest proper
time of trajectories going from a to c via b is composed of the largest time τ(a, b) of
going from a to b and the largest time τ(b, c) of going from b to c, and is thus equal
to τ(a, b) + τ(b, c). The largest proper time τ(a, c) among all possible trajectories
leading from a to c is larger than or equal to the largest possible time τ(a, b)+τ(b, c)
among those trajectories which pass through b.

In terms of the largest proper time τ(a, b), we can conclude that a precedes b if
τ(a, b) > 0 – because otherwise, if a does not causally precedes b, we take τ(a, b) = 0.
Thus, we conclude that if τ(a, b) > 0 and τ(b, c) > 0, then

τ(a, c) ≥ τ(a, b) + τ(b, c) (1)

Proper time vs. distance. For distance d(a, b), a similar logic based on its
definition as the shortest path leads to the triangle inequality d(a, c) ≤ d(a, b)+d(b, c)
– since the length d(a, c) of the shortest path from a to c is smaller than or equal to
the shortest length d(a, b) + d(b, c) of all the paths that go through b.

Because of this connection, the above inequality (1) is called an anti-triangle
inequality. Because of its origin in kinematics (a physical description of how particles
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and physical bodies move), the function τ(a, b) is known as a kinematic (k-)metric;
see, e.g., [3, 13,15].

So, we arrive at the following definition.

Definition 1. Let X be a set. By a kinematic (k-)metric of X, we mean a
function τ : X ×X → IR for which τ(a, b) ≥ 0 for all a and b, τ(a, a) = 0, and the
following property is satisfied:

if τ(a, b) > 0 and τ(b, c) > 0, then τ(a, c) ≥ τ(a, b) + τ(b, c), (2)

The pair (X, τ) is called a k-space-time.

Discussion. The usual metric d(a, b) is symmetric: d(a, b) = d(b, a). In con-
trast, a k-metric is highly asymmetric: one can easily prove, by contradiction, that
if τ(a, b) > 0 then τ(b, a) = 0. Indeed, if we had τ(b, a) > 0, then due to the
anti-triangle inequality, we would have

0 = τ(a, a) ≥ τ(a, b) + τ(b, a) > 0,

a contradiction.

A natural question. Since k-space-times are natural models of space-times, a
natural question is: is there a universal k-space-time, i.e., a k-space-time into which
every other k-space-time can be isometrically embedded?

In this paper, we prove that such a universal k-space-time is indeed possible. To
formulate our precise result, however, we need to make one physics-related comment.

A physics-related comment. From the mathematical viewpoint, a space-
time has infinitely many possible events. For example, in Newton’s physics or in
relativistic physics, we can have events corresponding to infinitely many moments
of time and infinitely many spatial points.

In practice, however, at any given moment of time, we have only made finitely
many observations; in other words, we only have finitely many observed events. This
number can be huge, and by performing additional observations and measurements,
we can make it even larger – but we will always have finitely many events. Thus,
from the operationalist physical viewpoint, it is sufficient to make sure that every
finite k-space-time can be embedded.

In the metric case, we can make the same restriction and then tend to the limit,
since the metric d(a, b) naturally induces the notion of convergence. There is no
such automatic convergence for kinematic metric, so we will restrict ourselves to
finite k-space-times.

2. Main Result
Definition 2. Let (X, τ) and (X ′, τ ′) be k-space-times. A 1-1 mapping f :

X → X ′ is called an isometric embedding if for every x, y ∈ X, we have τ(x, y) =
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τ ′(f(x), f(y)). When f is a bijection, we say that the k-metric space-times are
isometric.

Definition 3. A k-space-time U is called universal if every finite k-space-time
can be isometrically embedded into U .

Definition 4. Let (X, τ) be a k-space-time, and S, S ′ ⊂ X. A bijection f :
S → S ′ is called an isometry if for every two points x, y ∈ S, we have τ(x, y) =
τ ′(f(x), f(y)). When S = S ′ = X, an isomorphic embedding is called an auto-
isometry.

Definition 5. A k-space-time (X, τ) is called ultra-homogeneous if every isom-
etry between its finite subsets S and S ′ can be extended to an auto-isometry of X.

Theorem.

• There exists a universal ultra-homogeneous kinematic metric space.

• Every two universal ultra-homogeneous kinematic metric spaces are isometric
to each other.

Comments.

• In other words, modulo isometry, there is a unique universal ultra-
homogeneous kinematic metric space.

• In [4, 12], it is shown that a universal ultra-homogeneous space-time model
exists if we only model causality relation. In this paper, we extend this uni-
versality result to the case when we also consider proper time (i.e., k-metric).

Proof. To prove our result, we will use the Fräıssé limit theory; see, e.g.,
[7, 8, 11]. In our description, we will only need a relational part of this theory. In
this part, we start with a set I which either coincides with the set of all positive
integers, or has the form I = {1, . . . , n} for some n. A signature L is then defined as
a mapping which assigns, to each integer i ∈ I, a symbol Ri and a positive integer
ni called arity. By an L-structure A, we mean a tuple consisting of a non-empty set
A and a sequence of ni-ary relations RA

i ⊆ Ani . An injection f : A → B is called
an embedding between structures A and B if for every i and for all possible values
a1, . . . , ani , we have RA

i (a1, . . . , ani) ⇔ RB
i (f(a1), . . . , f(ani). The existence of an

embedding is denoted by A ≤ B.
An embedding is called an isomorphism if it is a bijection. The existence of an

isomorphism is denoted by A
∼
= B.

A class K of finite L-structures is called hereditary if A ≤ B and B ∈ K imply
A ∈ K. It is said to satisfy the joint embedding property if for every two structures
A ∈ K and B ∈ K, there exist a C ∈ K for which A ≤ C and B ≤ C. The class
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is said to satisfy the amalgamation property if for every three structures A ∈ K,
B ∈ K, and C ∈ K, and for every two embeddings f : A → B and g : A → C,
there exists a structure D ∈ K and embeddings r : B → D and s : C → D for
which r ◦ f = s ◦ g. A countable class K is called a Fräıssé class if it hereditary.
satisfies joint embedding and amalgamation properties, and contains structures with
arbitrary large number of elements. Fräıssé has proven that for every Fräıssé class
K, there exists a countable ultrahonomegenous structure into which each structure
from the class K can be isomorphically embedded, and that such a structure is
unique up to an isomorphism; this universal structure is known as the Fräıssé limit
of the class K.

We want to use this result to prove our theorem. The main difference between
Fräıssé’s formulation and our problem is that Fräıssé considers sets with relations,
while we are interested in sets with a real-valued function τ(a, b). So, to reduce
our problem to Fräıssé’s, we need to describe the real-valued function in terms of
relations. We can do it by considering, for each positive rational number q =

m

n
, a

binary relation Rq(a, b) ⇔
(
τ(a, b) ≥ m

n

)
. Since there are countably many rational

numbers, we are thus introducing countably many relations.
For every a and b, if we know the truth values of all the relations Rq(a, b), this

means that we know the set of all rational numbers q ≤ τ(a, b). From this set,
the real number τ(a, b) can be determined as the supremum of this set. Thus, if
Rq(a, b) ⇔ Rq(f(a), f(b)) for all q, this means that the corresponding sets of rational
numbers coincide and therefore, τ(a, b) = τ(f(a), f(b)). So, for the above-defined
signature (set of relations), isomorphism means isometry of the corresponding k-
space-times, embedding means isometric embedding, etc.

Thus, to apply the Fräıssé result to our case, it sufficient to prove that the class
K of all finite k-space-times is hereditary, has joint embedding and amalgamation
properties, and has structures (k-space-times) with arbitrarily large number of ele-
ments.

Hereditary property follows directly from the definition of a k-space-time; as
k-spaces-times with arbitrarily large number of elements, we can take, e.g., finite
subsets of the usual Minkowski space-time – or, even simpler, sets {1, . . . , N} with
τ(x, y) = max(y − x, 0).

The joint embedding property is also easy to prove: for each pair of structures
A = (A, τA) and B = (B, τB), as the desired structure C, we can simply take the
union C of two disjoint sets A and B, with the following k-metric:

• for a, a′ ∈ A, we take τ(a, a′) = τA(a, a′);

• for b, b′ ∈ B, we take τ(b, b′) = τB(b, b′); and

• for a ∈ A and b ∈ B, we take τ(a, b) = 0.

To complete the proof, let us prove the amalgamation property. Let us assume
that two embeddings: f : A → B and g : A → C, for some structures A = (A, τA),
B = (B, τB), and C = (C, τC). Without losing generality, we can safely assume that
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A, B, and C are disjoint sets – otherwise we would simply take disjoint copies of A,
B, and C. Then, to get D, we do the following:

• We take the union B ∪ C.

• On this union, we have an equivalence relation: two points x, x′ are equivalent
if there exists an a ∈ A such that x = f(a) and x′ = g(a).

One can easily check that this is indeed an equivalent relation, in which each equiv-
alence class consists of either one element or of two elements {f(a), g(a)} for some
a ∈ A. A factor-set of B ∪ C over this equivalence relation is our set D.

The subset of D formed by elements of the type f(a) is isomorphic (thus isomet-
ric) to A. Trivial embeddings r(b)

def
= b and s(c)

def
= c are isomorphic embeddings of

B and C into this set D. (In topology, what we do to get D is called “gluing": we
take B and C, and glue them together by the part isomorphic to A.)

The k-metric τ on this set D is then defined as follows:

• for b, b′ ∈ B, we take τ(b, b′) = τB(b, b′); for c, c′ ∈ C, we take τ(c, c′) =
τC(c, c′);

• for values b ∈ B − C and c ∈ C −B, we define

τ(b, c) = max
a∈A

(τB(b, a) + τC(a, c));

• for values b ∈ C −B and c ∈ B − C, we define

τ(b, c) = max
a∈A

(τC(b, a) + τB(a, c)).

One can check that thus defined function satisfies the anti-triangle property (2).
The statement is proven, and so is our main result.
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École Norm. Sup. 1954, V. 71, P. 363-388.
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